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Abstract.  Despite technological advancements, ensuring aircraft safety remains a challenge, 
however,  Machine  learning  (ML)-based  approaches  for  predicting  future  incidents  play  a 
crucial role in addressing flight safety. As ML models increase in complexity, their decision-
making  process  becomes  less  transparent,  posing  significant  challenges  to  trustworthiness. 
While simpler models demonstrate lower accuracy, more intricate models such as deep neural 
networks  achieve  higher  accuracy  but  sacrifice  interpretability.  In  this  study,  we  enhance 
trustworthiness  in  aircraft  safety  prediction  by  leveraging  a  dataset  of  past  accidents  and 
incidents to prevent similar accidents from occurring in the future. To achieve this, we apply  
Random  Forest  and  Extreme  Gradient  Boosting  models  to  classify  different  categories  of 
aircraft incidents. Additionally, we apply two powerful explainable artificial intelligence (XAI) 
techniques:  Local Interpretable Model-Agnostic Explanations (LIME) and Shapley Additive 
exPlanations (SHAP) to provide insights into both local and global predictions made by the  
models.  Notably,  our  results  reveal  high  accuracy  in  these  predictions  while  maintaining 
trustworthiness.  This  research  contributes  to  the  advancement  of  XAI  and  offers  valuable 

insights for safety-critical applications and decision support systems.

Keywords: Aircraft  Safety,  Random  Forest,  Extreme  Gradient  Boosting  (XGBoost), 
Explainable Artificial Intelligence, Local Interpretable Model-Agnostic Explanations (LIME), 
Shapley Additive exPlanations (SHAP).

1 Introduction

Safety of aircraft is critical as it poses a significant risk of accidents and incidents,  
threatening  aircraft  operations  and  imposing  substantial  economic  costs  on  the 
aviation  industry.  Aircraft  incidents  and  accidents  can  have  a  profound  impact, 
resulting in loss of life, severe injuries, and significant economic losses, as well as 
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damaging  the  reputation  of  airlines  and  aircraft  manufacturers  and  undermining 
public trust  in the aviation industry.  The annual safety report  by the International 
Civil  Aviation Organization revealed a  global  accident  rate  of  2.05 accidents  per 
million departures in 2022,  representing a 6.3% increase from the previous year's 
statistics [23]. 

As the fastest means of transportation, the aircraft industry is poised for significant 
expansion, with global demand expected to triple by 2050, thereby increasing the 
demand for aviation safety to meet the escalating requirements [25]. However, the 
dominant safety frameworks currently utilized by air traffic controllers are largely 
reactive, focusing on minimizing the impact of safety incidents after they happen. 
However, such systems are often criticized as a basic form of risk management, and 
during emergencies, they become less efficient and resource-intensive. Pilots and air 
traffic  controllers  rely  on  real-time  data  to  make  their  safety-critical  decisions, 
ensuring timely and effective responses to evolving situations in the flight. 

There  exist  complex  non-linear  interactions  and  interdependencies  between 
various factors such as mechanical,  weather,  human, and communication,  coupled 
with their  dynamic evolution over time,  pose significant  challenges in developing 
precise  physical  models  that  can  accurately  capture  the  complex  relationships 
governing  aircraft  safety.  Machine  learning  (ML)  has  demonstrated  its  ability  to 
accurately model and predict intricate physical phenomena, leading to the widespread 
application of this technology especially for predicting the safety of complex systems.  
In the aviation industry, ML-based predictive safety approaches are important which 
prioritize  risk  prevention,  anticipate  hazards,  and  mitigate  them  before  incidents 
occur.  However,  due  to  black-box  nature  of  ML  models,  their  decision-making 
process  is  difficult  to  interpret  by humans,  leading to  a  lack of  transparency and 
subsequent trust issues. 

In  literature  ML-based  aircraft’s  safety  prediction  demonstrates  impressive 
predictive  capabilities  but  their  opacity  of  decision-making  processes  undermines 
trust among airline stakeholders, thereby severely limiting their widespread adoption 
in  real-world  applications,  where  safety  and  trustworthiness  are  paramount.  The 
safety  prediction  made  by  simpler  models  (e.g.,  linear  regression,  decision  trees) 
demonstrates  limited  predictive  accuracy  while  exhibiting  strong  power  of 
prediction’s  interpretability,  whereas  more  complex  models  (e.g.,  deep  neural 
networks) achieve superior accuracy but offer low reasoning of the decision-making 
process [1]. Although some surveys and reviews have provided general guidelines for 
explanations  of  predictions  made  by  ML  models  there  exists  a  significant  gap 
between  theoretical  advancements  and  practical  implementation  of  integrating 
trustworthiness in aircraft safety predictions as only two research endeavors on it, one 
for aircraft failure diagnosis [15] and other for runway surface contamination [16]. 
Also, the relative importance of each feature and their impact in the decision-making 
process  remain  unexplored  which  poses  a  significant  challenge  in  the  pursuit  of 
trustworthy ML models.

The main objective of this paper is to investigate the application of ML methods in 
the prediction of aircraft safety with higher accuracy and to demonstrate reasoning for  
the model’s prediction to ensure trustworthiness. This is done for predicting different 
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types of aircraft accidents such as accidents, incidents, criminal occurrence, hijacking, 
ground  fire,  sabotage,  and  other  unknown  occurrences,  through  developing  two 
autoregressive-inspired time series ensemble approaches of Random Forest (RF) and 
Extreme Gradient Boosting (XGBoost) classification models which are known for 
their efficiency, speed, and accuracy on large datasets [22]. The models are trained on 
a vast collection of historical accident and incident records from around the world, 
providing a rich source of information that enables the models to learn from past 
experiences  and  improve  their  predictive  capabilities.  Similar  to  other  ensemble 
methods, RF and XGBoost are inherently not interpretable, therefore, we utilize two 
powerful techniques: Local Interpretable Model-Agnostic Explanations (LIME) and 
SHapley Additive exPlanations (SHAP) to develop simplified models that  provide 
both  global  and  local  explanations,  enabling  the  understanding  of  the  model's 
predictions and the contribution of individual features to the output. The performance 
of our ML models is evaluated and compared with other similar accident/incident 
prediction approaches. The results of this study reveal remarkable predictive accuracy 
while maintaining transparency and ensuring trustworthiness. Our findings contribute 
to  advancing  the  field  of  XAI  and  provide  valuable  insights  for  safety-critical 
applications and decision support systems.

Following are main contributions of this research.
 The study’s results exhibit outstanding predictive accuracy of RF (Random 

Forest) and XGBoost models in predicting aviation safety incidents, while 
maintaining a high degree of transparency and ensuring the trustworthiness 
of the models.

 XAI techniques  like  LIME and SHAP are  demonstrated to  provide  clear 
local  and  global  explanations  of  model  predictions  in  aviation  safety 
systems.

 The study’s findings identified potential issues in aviation systems before 
they  resulted  in  critical  failures,  fostering  trust  in  AI  systems,  which  is 
crucial for their adoption in safety-critical applications.

This research paper is organized into the following sections. Section 2 covers the 
literature review, Section 3 provides details of Methodology while the results and 
discussions  are  described  in  Section  4.  Finally,  the  paper  ends  with  concluding 
remarks in Section 5.

2 Literature Review

Aircraft safety prediction by using ML algorithms is a highly focused research area 
and many researchers  have been contributing regarding different  dimensions.  The 
research  in  [2]  applies  data-mining  and  sequential  deep-learning  techniques  to 
accident investigation textual reports published by the National Transportation Safety 
Board (NTSB) to get predictions regarding adverse events. Zeng et. al. [3] introduce 
an innovative method combining the least absolute shrinkage and selection operator 
(LASSO) with long short-term memory (LSTM) for aviation safety prediction which 
demonstrates  improved  efficiency  and  robustness  while  maintaining  excellent 
generalization ability. The study in [4] presents a novel deep learning technique based 
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on auto-encoders and bidirectional gated recurrent unit networks to handle extremely 
rare failure predictions in aircraft predictive maintenance modeling. The authors of 
[5] introduce an analytical methodology which combines data cleaning, correlation 
analysis, classification-based supervised learning, and data visualization to identify 
critical  parameters and remove extraneous factors.  The research in [6]  develops a 
methodology to identify and classify human factor categories from textual aviation 
incident reports by using semi-supervised Label Spreading and supervised Support 
Vector Machine (SVM). Silagyi in [7] applies SVM models to predict the severity of 
aircraft damage and personal injury during approach and landing accidents. The study 
in [8] investigates cognitive workload in aviation by applying a stacking ensemble 
machine  learning  algorithm  (support  vector  machine,  random  forest,  and  logistic 
regression)  on  electroencephalogram  (EEG)  data  collected  from  ten  collegiate 
aviation students during live-flight operations in a single-engine aircraft. 

Focusing on aircraft safety prediction, the research in [12] explores the value and 
necessity  of  XAI  when  using  DNNs  (Deep  Neural  Networks)  for  Predictive 
Maintenance in Aerospace Integrated Vehicle Health Management.  Saraf et.  al.  in 
[13] investigate the intersection of AI and aviation safety by exploring implications, 
possibilities,  innovation  capacity,  skills  development,  and  ethical  regulation.  The 
authors in [14] conduct a comprehensive literature review to explore the applications 
of  AI  in  safety-critical  domains  by  identifying  Themes  and  Techniques,  Future 
Research Directions, and Practical Implications. The research in [18] analyzes AI’s 
usefulness  within  the  aviation  domain  and  synthesizes  findings  into  a  conceptual 
framework called the Descriptive, Predictive, and Prescriptive model. 

Hernandez et. al. in [17] focus trustworthiness of AI-based automated solutions in 
air traffic management and propose a novel framework which encompasses technical 
robustness, transparency, security, and safety. The practical challenges related to need 
of transparency and explainability, are also presented. The study in [15] addresses the 
challenge in aviation maintenance and proposes an XAI methodology, called Failure 
Diagnosis Explainability (FDE) which enhances transparency and enables checking 
whether a new failure aligns with expected diagnosis values. The research in [16]  
combines XGBoost models with the XAI technique SHAP to address the challenge of 
runway surface contamination (e.g., snow, ice, slush) during winter seasons, which 
reduces tire-pavement friction and poses safety risks for aviation.

In the existing literature, there are some research gaps. First, trustworthiness is  
often overlooked in the context of aircraft incident/accident predictions. Although ML 
models demonstrate strong predictive power but reliable, transparent, and safety are 
crucial for building trust among aviation professionals and passengers. Second, some 
models may sacrifice accuracy for interpretability striking the right balance between 
accuracy and interpretability remains a challenge. Third, there remains a gap between 
theoretical advancements and practical implementation of integrating trustworthiness 
in aircraft safety predictions as only two research endeavors on it for aircraft failure 
diagnosis [15] and runway surface contamination [16].

https://www.mdpi.com/2226-4310/7/6/73
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Fig. 1. The Proposed Methodology

3 Methodology

The methodology comprises of steps as shown in Figure 1, each step is discussed 
in detail in the following subsections.

3.1 Dataset 

The dataset  selected for  this  research focuses  on aviation safety  and comprises  a 
comprehensive collection of worldwide accidents, failures, and hijackings involving 
airliners, corporate jets, and military transport aircraft [24]. The dataset is selected 
because examining past accidents, researchers can determine the underlying causes 
and contributing factors, which can inform strategies to prevent similar accidents in 
the future. With 23519 data points and 23 features, this extensive dataset is contained 
in a single CSV file, covering incidents from 1919 to November 2, 2022, providing a 
valuable resource for analysis and insight into aviation safety trends and patterns. The 
dataset  is  obtained  from kaggle  which  is  a  vast  repository  of  publicly  accessible 
datasets across various domains.

3.2 Preprocessing 

Preprocessing  plays  a  crucial  role  in  ML  as  it  ensures  data  correctness  and 
consistency,  and  suitability  for  analysis.  The  selected  dataset  contains  missing 
information, composite values and inconsistent data format which need completeness, 
splitting and standardization in order to improve its quality. A two-step preprocessing 
is performed; one by using MS Excel and other by using Python. In Microsoft Excel 
the data is split based on delimiter characters such as : ‘|’ , ‘/‘ , ‘:’ for instance the 
column Onboard_Crew contains composite data containing the number of ‘Fatalities’ 
and ‘occupants’ of an incident separated by ‘/’ which is splitted into two columns 
‘Onboard_Crew_  Fatalities’   and  ‘Onboard_Crew_Occupants’.  The  data  of  date 
column such as Incident_Date is converted into timestamp. By using Python Null 
values in Object column are replaced by forward fill method (ffil) and question marks 
used as missing values in different columns were first replaced by NAN which are 



6 M. Amin, U. Noor, et. al.

then replaced by ‘unknown’. The Null values in integer columns are replaced with 
mean values and the dates in incident_date column are converted into dd-mm-yyyy 
format and the categorical data is converted into numerical data. 

3.3 Feature Selection 

RF extracts features in a recursive manner, selecting the most informative features 
at each node of the decision tree. The process is repeated multiple times, resulting in a  
collection of decision trees, each with their own set of extracted features. XGBoost 
extracts features in a greedy manner, selecting the most informative features at each 
node  of  the  decision  tree.  The  process  is  repeated  multiple  times,  resulting  in  a 
collection of decision trees, each with their own set of extracted features. Therefore, 
both  RF  and  XGBoost  ensemble  approaches  reduce  overfitting  and  improve 
generalization. Finally, columns containing text narratives, such as Incident_cause(es) 
and Incident_subcategory, from the dataset used in this study while these narratives 
could indeed provide valuable insights for explaining aircraft incident and accident 
predictions,  we  plan  to  explore  these  aspects  in  future  work  to  enhance  the 
comprehensiveness of our analysis. 

3.4 Random Forest 

This study builds prediction models that classify aviation events using the resilient 
Random Forest (RF) model by using dataset of past incidents. As an advancement of 
the  bagging  (Bootstrap  Aggregating)  technique,  RF  was  created  in  2001  and 
combines several decision trees to increase the model's robustness and accuracy [21].  
It is renowned for its effectiveness, speed, and accuracy on big datasets with lots of 
variables and is utilized for both regression and classification problems. In a variety  
of industries, including finance, healthcare, and e-commerce, RF is used to predict 
risks.

Random  Forest  is  chosen  for  its  exceptional  performance,  offering  a  rare 
combination of speed, accuracy, and scalability. It efficiently processes large datasets 
with numerous features, minimizing bias and robustly handling missing values and 
outliers, making it an ideal algorithm for our analysis. To predict a new point x:

Classification: Let  Ĉb( x ) be the class prediction of the bth random-forest tree. 

Then 

Ĉ rf
B ( x )=majority vote {Ĉb( x )}1

B
                                  (1)

3.5 eXtreme Gradient Boosting 

Using a large dataset of historical incidents, this research builds prediction models 
that categorize aircraft incidents using the cutting-edge XGBoost algorithm. Since its 
release in 2014, XGBoost, a highly scalable and effective implementation of gradient 
boosting decision trees has gained a great deal of attention and praise. It has proven 
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successful  in  machine  learning  competitions  and  has  been  used  in  a  variety  of 
transportation risk assessment applications across a range of industries, including road 
traffic, aviation, and shipping.

Because  of  XGBoost's  exceptional  performance,  handling  of  big  datasets,  and 
speed  of  computation,  it  was  chosen  to  train  the  airplane  safety  predictor. 
Furthermore, multicollinearity, a common problem in our data is successfully reduced 
using XGBoost's decision tree ensemble technique, guaranteeing reliable and accurate 
predictions.  In real  life,  the model has to be trained on the data,  which are often  
represented as an n-dimensional vector of outcomes (y) and a n times m matrix of  
input variables (X). A decision tree fk(x) is obtained at each iteration by minimizing 
an objective function.

obj ( f k ( x ))=∑
i=1

n

L( y i , f̂ ( xi )
[k −1 ]+ f k ( xi ))+Ω( f k ( x ))                  (2)

where (xi,yi) is the i-th observation, ∑
i=1

n

L( y i , f̂ ( xi )
[k −1 ]+ f k ( xi )) is the empirical 

estimate of the loss,  f̂ ( xi )
[k −1 ] is the current estimate of the model(i.e., the model 

computed  at  the  previous  iteration  k-1),  and  Ω( f k ( x )) is  a  penalty  term  that 

penalized the tree complexity.

3.6 Experimental Setup 

The  experiment  was  conducted  on  a  laptop  equipped  with  a  12th  Gen  Intel® 
Core™ i5-1235U 1.30 GHz processor,  8.00 GB RAM, and a 64-bit  Windows 10 
operating system with an x64-based processor. The Python code was developed and 
executed  within  Jupyter  Notebook  to  perform  tasks  such  as  data  analysis  and 
scientific  exploration.  This  setup  provided  a  robust  environment  for  executing 
computational tasks efficiently, ensuring that the data analysis processes were both 
reliable and reproducible. The choice of Jupyter Notebook facilitated an interactive 
coding  experience,  allowing for  real-time visualization  and  iterative  development, 
which are crucial for thorough scientific investigation.

3.7 Models Training 

Our goal is to predict aircraft safety based on previous accident/incident dataset 
and the features of the dataset are used to predict incident category. The types of 
incidents are labeled into six classes;  Accident class with 19543 records (Label 0), 
Criminal  occurrence (sabotage,  shoot  down)  having  1256  entries  (Label  1), 
Hijacking with 1092 (Label 2),  Incident  having 12 records (Label 3),  occurrence 
unknown with 570 entries  (Label 4) and  other occurrence (ground fire, sabotage) 
with 1046 records (Label 5). The dataset is partitioned into eighty percent training 
(18815  records)  and  twenty  percent  test  (4704  records)  data  frames.  Since  the 
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categorical data is converted into numerical data therefore all six classes are labeled 
with numbers from 0 to 5. Both RF and XGBoost are trained on training data. 

4 Results and Discussions

4.1 Performance of Models 

On test  dataset  both  models  demonstrated  an  accuracy  of  90.11% and  82.91% 
respectively. Considering the substantial imbalance in the dataset, where only 5.1% of 
cases belong to the incident class, relying solely on accuracy as a performance metric  
for classification in this research is inadequate. Accuracy may not accurately reflect 
the model’s performance on the minority class. Therefore, the performance of the RF 
classification model is assessed using confusion matrices, which provide a detailed 
breakdown of True Positives (TP), True Negatives (TN), False Positives (FP), and 
False  Negatives  (FN)  predictions. Table  1  displays  the  confusion  matrix  for  RF 
model's  predictions,  with the columns representing predicted classes and the rows 
representing actual classes, offering a clear visualization of the model's performance.  
The high values of TP for class 0, 2 and 5 gives confidence in model’s performance 
whereas the marginal scores of other classes and few zeros in case of class 3 are due 
to imbalance distribution of classes in dataset. The results of confusion matrix provide 
essential information about model’s performance and help analyze misclassifications.

For evaluation we also apply precision, recall and F1 score for each classification 
class as shown in Table 2 which makes a weighted average precision, recall and F1 
score as  0.89,  0.90 and 0.88 respectively.  These promising scores  reveal  model’s 
powerful predictive ability on unseen data and its performance beyond training data. 

In  Table  3  the  effectiveness  of  our  models  is  evaluated  by  comparing  their 
performance to similar research endeavors, notably [15], which tackled aircraft failure 
diagnosis  prediction,  and  [16],  which  addressed  runway  surface  contamination 
prediction, providing a framework for evaluating our approach's efficacy. The results 
show  that  our  research  employs  Random  Forest  and  XGBoost  machine  learning 
models to forecast aircraft accidents and incidents worldwide, yielding high accuracy 
scores of 90.11% and 82.91%, respectively, demonstrating the effectiveness of our 
approach in predicting aviation safety risks. 

Table 1. Confusion Matrix Table 1. Evaluation Metrics

0 1 2 3 4 5 class precision recall f1-score

0 3815 9 13 0 16 18 0 0.91 0.99 0.95

1 159 73 4 0 2 29 1 0.84 0.27 0.41

2 74 0 165 0 0 1 2 0.90 0.69 0.78

3 1 0 0 0 0 0 3 0 0 0

4 97 0 0 0 24 2 4 0.57 0.20 0.29

5 34 5 1 0 0 162 5 0.76 0.80 0.78



Towards Trustworthy Aircraft Safety: XAI for Accurate Incident & Accident Predictions 9

Table 1. Comparison with Existing Work

Ref dataset Model Used Accuracy Explanation

15 Netherland RF 81% FDE

16 Norway XGBoost NA SHAP

This 
work

global
RF

XGBoost
90.11% 
82.91%

SHAP and 
LIME

4.2 Interpretation 

The  complexity  of  RF  and  XGBoost  models,  which  aggregate  scores  from 
numerous decision trees (between 50 and 250) renders them challenging to interpret 
and comprehend. This opacity has contributed to the growing interest in Explainable 
Artificial  Intelligence (XAI),  as the increasing reliance on sophisticated black-box 
algorithms  like  XGBoost  and  deep  neural  networks  necessitates  a  better 
understanding  of  their  decision-making  processes  [16].  XAI  refers  to  a  set  of 
processes  and  methods  designed  to  enhance  human  understanding  and  trust  in 
machine learning algorithms [27]. As AI models grow in complexity, their decision-
making processes become increasingly opaque, posing challenges for interpretability. 
XAI techniques aim to illuminate these “black-box” models, making their predictions 
more  transparent  and  reliable.  XAI  encompasses  a  range  of  techniques  and 
methodologies  aimed  at  demystifying  the  complex  decision-making  processes  of 
black-box  ML  models,  thereby  rendering  their  predictions  more  comprehensible, 
trustworthy,  and  accountable,  thereby  fostering  greater  human  understanding  and 
confidence in AI-driven decision-making. XAI is actively used in diverse fields such 
as agriculture, games, information systems, smart cities, social media, sports, [19].

SHapley Additive exPlanations    
SHAP is a powerful framework for explaining the predictions of ML models [20]. 
SHAP (SHapley Additive exPlanations) is based on Shapley values, which have their  
roots  in  cooperative  game  theory.  SHAP  provides global  as  well  as  local 
explanations for predictions and can be used for tabular, text, image, and genomic 
data. It helps us understand why a specific instance received a particular prediction. 
SHAP treats any supervised learning model as a black box and calculates Shapley 
values  for  each feature  by evaluating all  potential  feature  combinations  and their  
respective contributions. This method assesses the impact of individual features on a 
model’s  predictions. It  connects  optimal  credit  allocation  (determining  how much 
each feature contributes) with local explanations. 

For SHAP explanations the predictions made by XGBoost model is utilized. The 
goal  of  using shapley values is  to  distribute  the prediction among variables.  This 
makes Shapley values part of the additive feature attribution methods, which means 
they have an explanation model that is a linear function of binary variables:
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g ( z )=∅0+∑
j=1

m

∅ j z j                                          (3)

where  z∈{0 ,1}m is  a  coalition vector  giving the  absence/presence  of  input 
variables in x and m is the number of variables in the original model. Methods with 
this explanation model assign an importance effect ∅ j to each variable and summing 
the effects of all variables approximates the output of the original model.

Fig. 2. SHAP Beeswarm Plot

SHAP values were intended for  localized explanations,  providing insights  into 
individual  predictions.  However,  Tree  SHAP's  high-speed  estimations  enable  the 
generation  of  local  explanations  for  entire  datasets,  facilitating  a  more  extensive 
understanding of the model's overall performance. By plotting local explanations for a 
complete test set, we can amalgamate individual insights into a comprehensive global  
understanding of the model's behavior and decision-making processes. 

Figure  2  shows a  beeswarm plot  of  local  SHAP values  for  each  test  sample,  
aggregated  to  form  a  global  explanation  of  the  classification  model's  overall 
performance, revealing how the model generates predictions for all instances in the 
test  set.  The  plot  displays  the  variables  in  decreasing  order  of  importance,  with 
increasing SHAP values (moving right on the x-axis) indicating a higher likelihood of 
accident class and negative values indicating a lower likelihood, with point density 
and color representing individual variable values. 

First  important  observation  from Figure  2  is  that  globally  the  most  impactful 
features in prediction of accident/incident  are ‘Aircraft-phase’,  ‘departure_Airport’ 
and ‘Destination_Airport’ which reveals that landing and takeoff flights at airport are 
most critical stages of a flight. Second, the ‘Aircraft_Nature’ and ‘Aircraft_Model’ 
are also impactful as they reveal the poor mechanical aspect of an aircraft.  are placed 
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at the top. Third, since we have split ‘date’, ‘day’ and ‘year’ the season and weather at 
an instance also play a significant role in the safety prediction.

The waterfall  plot  in Figure 3 focuses on explaining a single prediction (local) 
made by the model. It starts from the expected value of the model output (usually the 
average prediction) and shows how each feature’s contribution (positive or negative) 
moves the prediction from the expected value to the actual model output for that  
specific instance. Each row in the waterfall plot represents a feature. The SHAP value  
of a feature reflects how much that feature’s evidence influences the model’s output. 
The plot uses color-coding: red for positive and blue for negative contributions that 
helps  to  understand  which  features  are  driving  model’s  decision  for  specific 
prediction.

Fig. 3. SHAP Waterfall Plot

First  important  observation in  Figure 3 is  that  for  a  given prediction,  positive 
SHAP  values  such  as  ‘Aircraft_Model’,  ‘Day’  and  ‘Aircraft_Engines’.  Second, 
negative values such as ‘Aircraft_Phase’, ‘Aircraft_Nature’ and ‘Departure_Airport’ 
contribute negatively to reach a prediction. However, the global explanation in Figure 
2 ranks these features contradictory as compared to Figure 3. This contradiction can 
be  explained  that  each  prediction,  SHAP  determines  how  much  each  feature 
contributes to that specific prediction, known as local SHAP values. To derive global 
explanations, SHAP takes the average of the absolute local SHAP values for each 
feature  across  all  data  instances.  So as  a  result  this  average indicates  the  overall  
significance of each feature in the model’s predictions globally.

Local Interpretable Model-Agnostic Explanations
Local  Interpretable  Model-Agnostic  Explanations  (LIME)  provides local, 
interpretable explanations for individual predictions made by any machine learning 
model [26]. It treats any supervised learning model as a black box, can be applied to 
various types of models. LIME focuses on explaining predictions within the vicinity 
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of a specific data point. It samples data points around the instance being explained,  
creates a simpler surrogate model, and approximates the original model’s behavior. 
For LIME explanations the predictions made by RF model is utilized.

Figure 4 displays a bar chart  depicting prediction probabilities for six different 
classes; 0 indicates Accident, 1 represents Criminal occurrence, 2 shows Hijacking, 3 
indicates Incident, 4 represents occurrence unknown and 5 shows other occurrence as 
described  in  section  3.7. These  probabilities  represent  the  likelihood  of  different 
outcomes.  The  highest  probability  (0.75)  of  class  0  corresponds  that  the  model 
classifies the given instance as ‘Accident’ whereas the other probabilities are 0.13, 
0.10, and the lowest (0.01) for other classes. In Figure 4 and 5 the horizontal bars use 
different  colors  to  represent  values  of  prediction  probabilities,  making  it  easy  to 
visually compare the values.

Fig.  4. LIME  Prediction 
Probabilities

Fig. 5. LIME Feature Impacts Fig.  6. LIME  Feature 
Importance Scores

In  Figure  5,  there’s  a  list  of  features  with  corresponding  weights. 
‘Incident_Location’  has  a  strong  positive  weight  (99%),  meaning  it  significantly 
influences the prediction. Conversely, ‘Departure_Aircraft’ has a negative weight (-
25%), reducing the likelihood of this outcome. The Figure 6 lists several features on 
the right side. These features are likely input variables used by ML model such as 
“Incident  Location,”  “Aircraft  Operator,”  “Departure  Airport,”  “Year,”  “Aircraft 
Phase,” “Aircraft First Flight,” “Aircraft Model,” “Month,” and “Day”. Each feature 
has a corresponding value next to it. This value represents the importance or impact of 
that  feature  on  the  model’s  prediction.  For  instance,  a  high  value  4881  of 
‘Destination_Airport’  indicates  that  changing  that  feature  significantly  affects  the 
model’s  output.  In  Figure  6,  the  orange  color  indicates  features  that  positively 
influence reaching a prediction label,  while the gray color represents features that 
negatively impact achieving a prediction. 

This is particularly significant when comparing these results with findings of prior 
research efforts in interpreting predictions for aircraft safety domain those have just 
focused on two aspects one for aircraft failure diagnosis [15] and other for runway 
surface  contamination  [16].  The  study’s  findings  focus  on  aircraft  incident  and 
accident  predictions  which  reveal  exceptional  predictive  accuracy  for  RF  and 
XGBoost  models,  coupled  with  a  high  level  of  transparency  and  trustworthiness. 
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Additionally, XAI techniques such as LIME and SHAP effectively offer clear local 
and global explanations for the model’s predictions.

5 Conclusion 

The research successfully accomplished its objectives, which centered on predicting 
aircraft accidents and incidents for safety-critical systems. By leveraging historical 
data, the study forecasted future accidents. The AI models RF and XGBoost both 
achieved  remarkable  accuracy  in  these  predictions.  Moreover,  the  research 
demonstrated  the  effective  application  of  XAI  techniques,  specifically  LIME and 
SHAP, to provide comprehensive explanations for both local and global predictions in 
order to enhance trustworthiness.

The study exhibits several limitations. Firstly, the results heavily rely on a publicly 
available  dataset,  which  may  introduce  biases  or  inaccuracies.  Additionally,  the 
dataset suffers from imbalanced class distribution, missing values, and inconsistencies 
in  data  format.  Secondly,  the  predictive  features  used  are  limited;  incorporating 
environmental factors such as temperature, air pressure, and humidity could enhance 
accuracy.  Thirdly,  the research explored only two ML models,  RF and XGBoost, 
warranting further  investigation into more complex techniques like deep learning. 
Also currently we have provided both local and global explanations for predictions of 
XGBoost using SHAP, and interpretations of local predictions for RF using LIME. 
The application of both XAI frameworks to RF and XGBoost, could provide valuable  
insights  for  explaining  aircraft  incident  and  accident  predictions  to  allow a  more 
interesting direct comparison on the performance and level of explainability of the 
two frameworks.  Lastly,  to  improve  accuracy  and  interpretability,  additional  XAI 
methods should be considered.

While  the  airline  industry  frequently  displays  hesitance  toward adopting novel 
technologies  since  safety  is  the  top  priority  and  new  technologies  are  held  to 
extremely high standards before they can be adopted. AI holds significant promise for 
enhancing safety and ensuring trustworthiness. In forthcoming studies, emphasizing 
feature  engineering  and  enhancing  model  accuracy  will  be  pivotal.  Furthermore, 
ensuring the  interpretability  of  predictions  is  essential  for  their  effective  adoption 
within the airline industry particularly in decision support system.
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