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Abstract. Data centers are increasingly becoming significant energy
consumers worldwide. To reduce the amount of electricity they consume,
power capping may be used to set a limit to the maximum power they
can use at some given point in time. In this situation, an interesting
problem is how to make best use of the available power by throttling the
CPU frequency of different servers. As different tasks assigned to each
of these servers may not be impacted the same way when changing a
server’s CPU frequency, one problem that arises is how to select CPU
frequencies for each of the servers running tasks with specific character-
istics in such a way that the total execution time of all these tasks is
minimized while the overall power cap for all the servers is respected.
The paper presents an approach that models this problem as an opti-
mization problem and shows how to find an optimal solution in different
cases. This work can provide the basis to find economical solutions to
operate large data centers under power capping efficiently.
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1 Introduction

Energy consumption has become a serious concern for computing in recent
years. Mechanisms such as power capping or Dynamic Voltage Frequency Scaling
(DVFS) set limits to control power consumption: power capping sets an upper
bound for the maximum power that can be consumed at any point in time, while
DVFS scales down voltage and CPU frequency, hence power. Both mechanisms
have the potential to lead to energy savings, however, there are various aspects
and trade-offs that have to be considered for this to happen, also to avoid any
adverse effects on performance and system Quality of Service [10,12,20]. In gen-
eral, there appears to be a consensus that such techniques need to be carefully
managed if they are to lead to energy savings.

In this paper, we present work that considers a set of DVFS-enabled servers
which operate in an environment where a global power cap needs to be met. This
could be, for instance, the servers of a cluster, a cloud provider or a data cen-
ter, where the total power consumption of the cluster, provider or data center,
respectively, should not exceed a certain limit. Each of the servers has been allo-
cated some tasks, with specific CPU and I/O requirements; these tasks cannot
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be reallocated and must be executed on the servers they have been allocated to.
The problem that we address is how to choose frequencies for each of the servers
in a way that the overall execution time of the tasks is minimized, yet the global
power cap for all the servers is met. The key property to take into account is
the task requirements: the execution time of tasks with high CPU requirements
is affected most by a CPU frequency reduction whereas the execution time of
tasks with high I/O requirements is affected less.

The rest of the paper describes the fundamentals of an approach to solve
the problem. Section 2 provides some background and related work. Section 3
formulates the problem. Section 4 presents a solution along with an example of
how this solution can be applied. Finally, Section 5 concludes the paper.

2 Background and Related Work

There has been lots of work in the literature that considers DVFS-enabled re-
sources where the objective is to select appropriate CPU frequencies often to
minimize energy consumption [1,2,11,14,16,19]. Other work has also considered
how to optimize performance in the presence of a power cap [6,18,5]. In general,
finding an appropriate configuration of frequencies to meet a power cap without
overly damaging performance is not a trivial problem. Besides the optimization
aspects, there are various trade-offs between power (hence CPU frequency too),
energy and performance, which may also be affected by the characteristics of the
specific applications that are running; see, for example, Figures 1-3 in [15].

Yet, as also noted in [13,14], some cloud providers price compute resources in
terms of CPU frequency too, in such a way that a low CPU frequency costs less
than a high CPU frequency. This means that cloud users would need to select
CPU frequencies that optimize their use of cloud resources: clearly, going for
the cheapest CPU frequency, which is the lowest, may not necessarily be a good
option as, in this case, applications will take longer to complete. Furthermore,
following the observations in [15], it is not the case that the same CPU frequency
would be ideal for different sorts of tasks (applications). Generally, CPU-bound
tasks (or tasks that do lots of CPU processing) would be affected more than I/O-
bound tasks (or tasks that spend lots of time doing input-output and less time on
the CPU) if they run at a lower CPU frequency. In other words, the performance
drop of CPU-bound tasks would be more noticeable than the performance drop
of I/O-bound tasks when running at a lower CPU frequency. Thus, as users
typically have a maximum budget for the cloud resources they use, the problem
is how to use their budget to select CPU frequencies appropriately in a way that
optimizes the performance of a set of tasks with different characteristics that
they need to execute on a cloud platform. It is this problem that motivated the
work in this paper.

Assuming that CPU frequencies are priced linearly, the answer to this prob-
lem from the user’s point of view is equivalent to finding an answer to the follow-
ing practical question: Given a cloud provider or a data center that should not
exceed a certain power consumption limit (power cap), how this provider/center
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can lower frequencies of individual servers, each of which has been allocated a
specific task with different CPU and I/O characteristics for execution, so that
the provider/center’s power cap is not exceeded while the total execution time of
all these tasks is minimized?

The model that we develop in the paper to answer this question relies on
two key sub-problems that have a significant history in the literature. The first
is how to model power consumption in relation to CPU frequency. Generally, it
is assumed that power consumption is proportional to frequency cubed [17], a
relation that is generalized [2,3,4] to:

Pf = P0 · fα, (1)

where P0 and α > 1 are hardware-dependent characteristics and Pf is the power
consumption at frequency f . In this paper, we adopt Eq. (1) to model power.

The second sub-problem is how the reduction in frequency affects the execu-
tion time of a task. Adopting an approach initially proposed in [9] and also used
in [7,8], we estimate the runtime RT (i, f) of a task i at frequency f , as follows:

RT (i, f) =

(
βi · (

fmax
f
− 1) + 1

)
·RT (i, fmax), (2)

where RTfmax is the task runtime when running at the maximum CPU fre-
quency fmax and βi is a task-specific parameter that captures a task’s CPU-
boundedness, takes values between 0 and 1 and can be estimated through pro-
filing [7,8]. Tasks with lots of CPU requirements have a value close to 1 whereas
tasks with lots of I/O have a value close to 0.

3 Problem Formulation

We consider a problem with n tasks allocated on m identical machines. An
allocation function Alloc indicates for each task i, the machine Alloci on which
it is allocated. In the following, we will use the notation Sj = {i, Alloci = j}, the
set of tasks allocated on machine j. Each machine can operate at a frequency
f between bounds fmin and fmax. The frequencies are fixed once and for all
on each machine, before beginning the execution of the tasks. The objective
is thus to determine these frequencies in a way that minimizes runtime without
exceeding a total power cap. We consider that each task consists of a part of I/O
exchanges, and a part of pure CPU computation. The periods of I/O exchanges
are not affected by CPU frequency. Both power consumption and runtime are
correlated with CPU frequency, as shown in Eqs. (1) and (2). Thus, the runtime
of tasks allocated on machine j is

RTj(f) =
∑
i∈Sj

RT (i, f). (3)

For the sake of simplicity, we denote Cj =
∑
i∈Sj βifmaxRT (i, fmax) the amount

of computation of the tasks of Sj and CTj =
∑
i∈Sj (1− βi)RT (i, fmax) its I/O
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duration. Eq. (3) can thus be written:

RTj(f) =
Cj
f

+ CTj . (4)

We consider a power capping constraint P for the consumption of the m ma-
chines. We make the hypothesis that P ≥ m×P0f

α
min, to guarantee the existence

of a valid solution. The optimization criterion is the sum of the runtimes of all
tasks. Then, the objective is to minimize the function:

RT = min
f1,...,fm

m∑
i=1

RTj(fj) (5)

under the constraints:

∀j, P0

m∑
j=1

fαj ≤ P, (6)

and
∀j, fmin ≤ fj ≤ fmax. (7)

Without loss of generality, we will consider in the following P0 = 1.

3.1 Example

We consider as an example the execution of 5 tasks with the following param-
eters (Cj , CTj): [(1, 5), (6, 6), (7, 3), (8, 2), (40, 20)]. We consider the frequency
limits fmin = 2 and fmax = 5 and α = 3. This means that the minimum
power consumption is 40 with resulting runtimes [5.5, 9, 6.5, 6, 40]; the sum of
runtimes equals 67. The maximal power consumption is 625, with runtimes
[5.2, 7.2, 4.4, 3.6, 28] and sum of runtimes 48.4.

We consider a power cap of 200. A first possibility is to run the longest tasks
at maximum frequency and the shortest tasks at minimum frequency. We may
for example run tasks 1,2 and 3 at frequency 2, and task 5 at frequency 5; the
remaining power 51 is for task 4 that can run at frequency 3

√
51 ∼ 3.7. With

this allocation, we obtain a runtime ∼ 53.2. A second possibility is to use the
same frequency for all tasks. We then run all tasks at frequency 3

√
40 ∼ 3.4.

Then, we obtain a runtime of around 54.1.
The optimal frequency values proven in Section 4 obtain a sum of runtimes

around 53.1.

4 An Optimal Algorithm to Select Frequencies

4.1 Solution without frequency bounds

We first consider the problem where frequencies have no bounds, that is, there
is no constraint as defined in Eq. (7).
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Lemma 1. Optimal frequencies with no bounds If no constraints are given for
frequencies values, then, the minimum total runtime is reached for

fi =

 P · C
α

1+α

i∑m
j=1 C

α
1+α

j

 1
α

.

The corresponding total runtime is then

RT = P−
1
α

 m∑
j=1

C
α

1+α

j


α+1
α

+

m∑
j=1

CTj .

Proof. We demonstrate this lemma by induction on m. This property is trivially
true for m = 1.

Suppose the result holds for m− 1, let us prove it for m. We denote P1 the
power consumed by the m − 1 first machines. By induction, we know that for

i between 1 and m − 1, fi =

(
P1·C

α
1+α
i∑m−1

j=1
c
α

1+α
j

) 1
α

. In addition, it remains P − P1

power available for machine m, thus fm = (P − P1)
1
α .

We obtain:

RT = minP1


∑m−1
i=1

Ci

P

1
α
1

·c
1

1+α
i(∑m−1

j=1
c

α
1+α
j

) 1
α

+ Cm

(P−P1)
1
α

+
∑m
j=1 CTj

= minP1
P
− 1
α

1

(∑m−1
j=1 c

α
1+α

j

) 1
α

(∑m−1
i=1

Ci

C
1

1+α
i

)
+ Cm

(P−P1)
1
α

+
∑m
j=1 CTj

= minP1
P
− 1
α

1

(∑m−1
i=1 C

α
1+α

i

)α+1
α

+ Cm

(P−P1)
1
α

+
∑m
j=1 CTj

We define the function f(x) = x−
1
α

(∑m−1
i=1 C

α
1+α

i

)α+1
α

+ Cm

(P−x)
1
α

.

Then, f ′(x) = − 1

αx
α+1
α

(∑m−1
i=1 C

α
1+α

i

)α+1
α

+ Cm

α(P−x)
α+1
α

. f ′(x) is an increasing

function between 0 and P , that tends to −∞ in 0 and +∞ in P, so f(x)
is first decreasing then increasing, and its minimum is obtained in xopt with
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f ′(xopt) = 0. Thus,

1

αx
α+1
α

opt

(∑m−1
i=1 C

α
1+α

i

)α+1
α

= Cm

α(P−xopt)
α+1
α(∑m−1

i=1 C
α

1+α

i

)α+1
α

(P − xopt)
α+1
α = Cmx

α+1
α

opt(∑m−1
i=1 C

α
1+α

i

)
(P − xopt) = C

α
1+α
m xopt

xopt = P

∑m−1

i=1
C

α
1+α
i∑m

i=1
C

α
1+α
i

The optimal value for P1 is, therefore, P1 = xopt. We can easily deduce the
result for all values fi and RT.

In the following, we denote

f(i, j, k, P ) =

 P · C
α

1+α

i∑k
l=j C

α
1+α

l

 1
α

4.2 Main problem resolution

We now focus on the main problem with frequencies bounded between fmin and
fmax. First note that if frequencies given by Lemma 1 are all in the good interval
defined in Eq. (7), the solution is optimal. We consider without loss of generality
that machines are ordered by increasing Ci, that is C1 ≤ C2 ≤ · · · ≤ Cn. We
first prove the following result.

Lemma 2. For two machines i and j, if Ci ≤ Cj, then in the optimal solution
fi ≤ fj.

Proof. If we just consider the run times of machines i and j, we obtain x =
Ci
fi

+
Cj
fj

+CTi+CTj . By optimality, exchanging frequencies of i and j has lower

runtime and same power consumption. Thus, if Ci < Cj ,

Ci
fi

+
Cj
fj

+ CTi + CTj ≤ Ci
fj

+
Cj
fi

+ CTi + CTj
Ci
fi

+
Cj
fj
≤ Ci

fj
+

Cj
fi

Cj−Ci
fj

≤ Cj−Ci
fi

fi ≤ fj

If Ci = Cj , Lemma 1 states that the optimal frequencies are equal for same
duration tasks.

We can conclude that in the optimal solution, the frequencies fj are of in-
creasing values of j. We define jmin and jmax as the last index of a machine
at frequency fmin (0 if no machine is at fmin) and the first index of a ma-
chine at fmax (n + 1 if no machine is at fmax). Then, the machines from
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1 to jmin run at frequency fmin, the machines from jmax to m run at fre-
quency fmax, and the machines between jmin + 1 and jmax − 1 operate at
a frequency defined by Lemma 1. More precisely, for jmin < j < jmax, the
optimal frequency of machine j is fj = f(j, jmin + 1, jmax − 1, Pbound) with
Pbound = P − jmin · fαmin− (m− jmax + 1) · fαmax. This corresponds to an optimal
solution of the problem for this subset of machines.

In such a solution, the runtime can be computed as follows:

RT =

∑jmin

k=1 Ck
fmin

+ P
1
α

bound

 jmax−1∑
k=jmin+1

C
α
α+1

k


α+1
α

+

∑m
k=jmax

Ck

fmax
+
∑
j

CTj

We denote Smin =
∑jmin

k=1 Ck, Smax =
∑m
k=jmax

Ck, SRT =
∑jmax−1
k=jmin+1 C

α
α+1

k

and CT =
∑
j CTj . Thus, we obtain:

RT =
Smin

fmin
+ P

1
α

boundS
α+1
α

RT +
Smax

fmax
+ CT

The problem now is to determine the optimal values for jmin and jmax. The
main constraint for these values corresponds to frequency bounds. The frequen-
cies computed by Lemma 1 need to be contained in the bounds of Eq. (7).
Formally,

∀jmin < j < jmax, fmin ≤ f(j, jmin + 1, jmax − 1, Pbound) ≤ fmax (8)

As Cj are in increasing order, we can simply verify

f(jmin + 1, jmin + 1, jmax − 1, Pbound) ≥ fmin (9)

and

f(jmax − 1, jmin + 1, jmax − 1, Pbound) ≤ fmax (10)

With the current notation, we have :

f(jmin + 1, jmin + 1, jmax − 1, Pbound) =

(
P ·C

α
1+α
jmin+1

SRT

) 1
α

and

f(jmax − 1, jmin + 1, jmax − 1, Pbound) =

(
P ·C

α
1+α
jmax−1

SRT

) 1
α

.

We check all possibilities for jmin and jmax between 1 and m, as described
in Algorithm 1, which enumerates all possible values for jmin between 0 and m,
and for jmax between 1 and m+1. For each of these values, it updates the values
of Smin, Smax and SRT (lines 3-5). Then, line 7 verifies if the current values jmin

and jmax constitute a valid solution for constraints (6), (9) and (10). The last
lines (8-11) compute the corresponding runtime and update the objective value
MinRT if necessary. The algorithm has a quadratic complexity O(m2), due to
the constant time to update variables Smin, Smax and SRT .
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Input: fmin, fmax, α, [(C1, CT1), · · · (Cm, CTm)]
1 MinRT = +∞; Stotal =

∑m

i=1
Ci; Smin = 0; Smax = Stotal; SRT = 0;

2 for jmin = 0 to m do

3 Smax = Stotal − Smin; Smin+ = Cjmin ; SRT = −C
α
α+1

jmin
;

4 for jmax = jmin + 1 to m+ 1 do

5 Smin− = Cjmax−1; SRT+ = C
α
α+1

jmax−1;

6 Pbound = P − jmin ∗ fαmin − (m− jmax + 1) ∗ fαmax;
7 if Pbound ≥ 0 and f(jmin + 1, jmin + 1, jmax − 1, Pbound) ≥ fmin and

f(jmax − 1, jmin + 1, jmax − 1, Pbound) ≤ fmax then

8 RTcurrent = Smin
fmin

+ P
1
α
boundS

α+1
α

RT + Smax
fmax

;

9 if RTcurrent < MinRT then
10 MinRT = RTcurrent;
11 end

12 end

13 end

14 end
15 Return MinRT ;

Algorithm 1: Algorithm for optimal frequencies without allocation

4.3 An Example

We use again the example in Section 3.1, with 5 tasks with parameters (Cj , CTj):
[(1, 5), (6, 6), (7, 3), (8, 2), (20, 20)], global parameters fmin = 2, fmax = 5 and
α = 3, and a power cap of 200. Obtaining optimal values according to Section 4.1
leads to frequency values between 2.05 and 4.33 that is valid for frequency limits.
It corresponds to a total runtime of 47.4. This property holds for a power cap
ranging between 186.8 (in which case the optimal frequency for task 1 is 2) and
308.6, with an optimal frequency for task 5 of 5. Below a power cap of 186.8, the
optimal frequency for task 1 will be fmin = 2 and above a power cap of 308.6,
the frequency of task 5 will be fixed at 5.

If we consider a variant with task parameters Cj : [1, 6, 7, 8, 30], the optimal
frequency for the first task without frequency limits is 1.96, below fmin. Applying
frequency limits, this task will run at minimum frequency, and the remaining
tasks will follow Lemma 1 applied on the 4 remaining tasks with power 192.

Using parameters Cj : [1, 6, 7, 8, 40] and a power cap of 235, the optimal fre-
quency values without bounds range from 1.99 to 5.01. The optimal solution in
the general problem is then obtained with task 1 running at frequency 2 and
task 5 at frequency 5.

5 Conclusion

This paper has presented a model and a solution to select CPU frequencies for
a set of servers belonging to a cloud provider or a data center so that a global
power cap constraint can be met while the execution time of the tasks allocated
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to these servers is minimized. To achieve this, the paper relies on modelling tasks
in terms of their CPU boundedness and exploiting the fact that CPU-bound
tasks are more impacted by any frequency reduction than I/O-bound tasks. The
preliminary work in this paper suggests that there is potential in producing
energy-efficient solutions that could be used in practice to find economical solu-
tions to operate large data centers under power capping. Additional work could
evaluate our approach in real-world environments while it could evaluate and
model the CPU-boundedness of tasks in different workloads more elaborately.
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