Scheduling Energy-Aware Multi-Function
Serverless Workloads in OpenFaaS

0009—0001—0220—"7326] and Karim

0000—0001—5811—5263]

Raulian Chiorescul
Djemamel

School of Computing, University of Leeds, Leeds LLS2 9JT, UK
{sc19ric,k.djemame}@leeds.ac.uk

Abstract. The paper investigates the prediction capabilities of a Ma-
chine Learning model in real-time scheduling applications on Kubernetes
in a serverless computing environment with the aim to achieve a de-
gree of energy efficiency. A highly pluggable framework for integrating
a learning-based model into the Kubernetes scheduler is proposed and
evaluated in a serverless setup on OpenFaaS. The experimental results
in a cloud-native deployment demonstrate that, while maintaining Qual-
ity of Service for the application, an overall 8% in power reduction is
achieved at a minimal performance loss.

Keywords: Serverless computing - Power consumption - Kubernetes -
Machine Learning

1 Introduction

In the current climate, cloud computing plays a vital role in sustaining various
aspects of our digital lives, from social media to large-scale data analysis. As
the demand for these services continues to skyrocket, so does the need for more
cloud data centres, which in turn increases overall energy consumption world-
wide. As a consequence, energy efficiency has become an imperative issue for
cloud computing service providers to lower costs as well as minimise the energy
consumption impact on the environment.

Serverless computing is an architectural paradigm that enables developers
to focus on application functionality rather than the underlying infrastructure.
By abstracting away the underlying servers, serverless computing allows for au-
tomatic scalability, flexibility, and potential cost reductions, as users only pay
for the number of invocations of their specific functions. This paradigm shift
has transformed how applications are developed and deployed, leading to its
widespread adoption in the cloud computing industry. On the other hand, as
with any relatively novel technology, new challenges are introduced in the field.
One of these challenges is to measure and potentially optimise energy usage in a
cloud environment, as users do not have access to the underlying infrastructure.
Moreover, a serverless function is essentially a proxy for energy usage as a unit
of (serverless) compute and therefore a cost, making functions instantiation and
orchestration significantly energy and resource efficient [4].

2 R. Chiorescu et al.

OpenFaaS [13] is an open-source serverless platform that provides a frame-
work for building serverless functions by allowing developers to package any pro-
cess or container as a function facilitating their deployment without requiring
extensive adaptation. OpenFaaS relies on Kubernetes for scheduling containers
that run the serverless functions and is considered as an attractive serverless
engine due to Kubernetes’s extensibility. The evaluation of OpenFaas has re-
vealed superior power efficiency as compared to a Docker containers setting [1].
As Machine Learning (ML) has gained increased traction and is being adopted
in some critical areas of resource scheduling, planning and control, this paper
addresses the question of whether the integration of a ML-based model into the
Kubernetes scheduler can achieve better power efficiency as compared to the de-
fault scheduler. A change at the function or scheduler level must therefore be
made in order to achieve energy-aware serverless functions.

The paper makes the following contributions:

— we propose a highly pluggable framework for integrating a learning-based
model into the Kubernetes scheduler;

— we evaluate the performance of the proposed scheduler extension against the
default Kubernetes Scheduler;

— we demonstrate that significant power efficiency is gained by integrating a
learning-based model into the Kubernetes scheduler.

The paper is structured as follows: Section 2 reviews the related work and
looks into the research landscape surrounding scheduling functions on serverless
computing platforms. The design addressing the framework for integrating a
learning-based model into the Kubernetes scheduler is presented in Section 3.
The experimental environment setup and the results of the evaluation of the
custom scheduler are described in Section 4. Section 5 concludes with a summary
of the research findings and suggestions for future work.

2 Related Work

There have been a multitude of research investigations in the area of energy
consumption in the serverless space. Alhindi et al. [1] investigate the differ-
ence in power usage between OpenFaaS and Docker across four scenarios, in
a on-premises hardware, virtual machine-based experimental setup: standalone
Docker containers, OpenFaaS with faasd, a lightweight runtime of OpenFaaS
that runs on containerd directly under the hood, OpenFaaS on Kubernetes and
Docker containers on Kubernetes. They discovered that OpenFaaS with faasd
tends to consume less power on a memory-heavy benchmark than its Kubernetes
counterpart with a decrease of 58%, which is expected, as the runtime is more
lightweight.

Jia and Zhao [10] propose a mechanism for energy-aware resource allocation
in a serverless context to minimise power consumption named RAEF. An agent
running at the function level is proposed, constructed of four components, where
the most important are the predictor and the resource explorer. The findings

Scheduling Energy-Aware Multi-Function Serverless Workloads in OpenFaaS 3

show that the proposed solution can reduce energy consumption anywhere from
a noticeable 9.7% to a significant 21.2% across different workloads. Moreover,
the control-plane components of OpenFaaS consumes an insignificant amount
of power compared to the function runtime plane. Rocha et al. [15] implement
a Kubernetes scheduler extension based on multiple linear regression models
in order to predict energy and performance based on the workload, CPU and
memory requirements. The approach includes a user set weight between 0 and 1
in decimal increments, that determines the desired balance between energy and
performance. 7.1% improvement in terms of energy is achieved at the detriment
of ~10% performance, while their maximum performance setting improves run-
time by ~20% at a 5% energy increase. Toka et. al [16] propose a Kubernetes
scaling engine that makes the auto-scaling decisions apt for handling the actual
variability of incoming requests. Four different approaches to a learning-based
solution are devised auto-regressive (AR), unsupervised (HTM), deep learning
(LSTM) and reinforcement learning, to determine which one performs better
by letting them compete against each other via a scoring mechanism based on
past predictions. The experimental results show that at a slight increase in re-
source usage (2-9%) the system manages to decrease the loss in requests from
22% at the lowest to 72% percent at the highest. The work of Das et al. [3]
focuses on cost efficient execution of multi-function serverless applications on
hybrid cloud deployments based on OpenFaaS and AWS Lambda. A framework
named Skedulix is proposed based on a greedy solution to scheduling after it was
modelled into a Mixed Integer Linear Program (MILP). Serverless applications
are modelled as directed acyclic graphs (DAGs), in which each node represents
a different function. The goal of the scheduler is to speed up processing at the
lowest cost possible, by maximising the use of the private cluster and offloading
any incompletable work to the public cloud in cases where the deadline cannot be
met. Fan and He [6] target the all too well-known issue of cold start by devising
a new scheduling strategy that allows creating multiple pods at a time instead
of the default pod-by-pod approach that Kubernetes adopts as it has to traverse
each node to compute the score that determines the most beneficial placement
which can cause a slowness in start-up latency. Essentially, they propose a simple
algorithm based on Mixed Integer Programming (MILP), that divides pods into
groups and schedules a group at a time when it passes a set overload threshold
and achieves sizeable reduction in latency in simulation, ranging from ~20-60%
depending on the number of pods that need to be scheduled.

In summary, work has addressed scheduler-level optimisations in Kubernetes,
although none seem to consider energy consumption in a serverless context. Most
are centred around performance but none considers the public cloud in their
experiments. In terms of approach and workload, to the best of our knowledge no
work targets a multi-function workload while considering energy efficiency. This
work is aimed at an image processing pipeline on OpenFaaS and uses a learning-
based approach for performing scheduling decisions. While RAEF focuses on
function-level adjustments [10], this paper explores possibilities at the scheduler

4 R. Chiorescu et al.

level, although similarly it aims to thread the needle between Quality of Service
(QoS) provision boundaries in order to minimise power consumption.

3 System Design

The principal research question addressed in this paper is: Following the inte-
gration of a ML-based model into the Kubernetes scheduler, are results reliable
in presenting a realistic trade-off between performance and energy consumption?
This concludes if, following an evaluation of the custom Kubernetes scheduler,
the results do illustrate a clear trade-off between energy consumption and perfor-
mance, and if the reduction in energy is worthwhile in the sense that it maintains
an acceptable QoS.

3.1 Architecture

¥
<—POST Fomated Metics——| ——GeT Raquest for Mosics

€—GET htp:10.0.0.4/apifrodict—

o

Leaming Model Ao G

Depioyed on s
zure

Kubemetes Cluster

/ Control Plane ./ wontotg \
/

\ lamespace
‘ v
cassro s [0) $—smas romcmy | 5T
4 et
i ponctn . —

L g] Prometheus Adapter”

‘Scheduler Extension API (-1 OpenFaas

Function
Namespace

Perform & Retum Scheduling Docision 1

o
Telemetry-Aware Scheduler
\\\‘ // /

Fig. 1. Flow and Architecture

Figure 1 illustrates the architectural design and flow of our proposed im-
plementation of the system. The flow is initiated with an agent situated on
the monitoring stack of the solution. It invokes an endpoint part of an interim
component between the ML model and the Kubernetes Cluster. Following the
invocation, the container API retrieves resource usage metrics from the monitor-
ing infrastructure Prometheus [14]| and forwards them to the model to retrieve
a prediction, sending it back to the agent which stores on each node their own
version of the prediction result, being either schedulable or unschedulable at a
specific point in time. Then, an adapter for Prometheus formats the result of the

Scheduling Energy-Aware Multi-Function Serverless Workloads in OpenFaaS 5

prediction, and passes it to the control plane of the cluster via the API server
component. Finally, the custom scheduler implementation processes the format-
ted scheduling instruction metric and schedules new pods on the predicted nodes
accordingly.

The core component of the system is a custom variation of Intel’s Telemetry
Aware Scheduler [8]. Essentially it is used to perform scheduling decisions based
on various metrics. The manner in which it operates is based on files designated
as telemetry policies. The user can define multiple scheduling strategies based
on the desired metrics that should take part in scheduling decisions. Every met-
ric can be assigned one of three operators, Equals, LessThan and GreaterThan.
In our case this is signified by the schedule instruction metric, a pre-formatted
prediction result, based on which the custom solution performs scheduling deci-
sions.

3.2 Machine Learning Model

For the machine learning model Scikit-learn’s Random Forest Classifier was em-
ployed [11]. This was chosen for its ability to handle a large number of features
and its robustness against over-fitting. CPU and the memory are the most im-
portant resources to be considered in terms of performance and power consump-
tion in the context of applications execution [5]. Resource consumption metrics
(CPU and Memory Usage, Power, Pod Count) were collected from Prometheus
on each node over multiple load experiments to serve as training and validation
data. These experiments involved varying the load on the Kubernetes cluster in
a controlled manner and collecting metrics at regular intervals.

The model provides predictions in the form k8s_worker [NODE ID], which
represent the node that would be the most appropriate to schedule a new pod
on based on the current metrics that are fed into it.

The model was deployed on Azure Machine learning [12], a comprehensive
machine learning platform that supports language model fine-tuning and deploy-
ment. It exposes a REST endpoint that can be accessed with a POST request
with the required usage data in order to output a prediction. This way of utilis-
ing the capabilities of Azure ML and Azure Container Instances is what makes
the proposed solution highly-pluggable as models are trivial to interchange, and
any of the metrics that are desired for the model to make a prediction require
simple modifications at the level of the API running as the Container Instance.

3.3 Research Hypotheses

As a result of the architectural design and implementation of the proposed solu-
tion, a total of three hypotheses are formulated as predictions for the experimen-
tal outcomes. As such, experiments will test those hypotheses and the results of
each experiment will prove or disprove them.

H1. The ML solution will be reliable in scheduling pods, with little added delay
between scheduling decisions. This hypothesis is based on research publications

6 R. Chiorescu et al.

that used a learning-based approach in building custom scheduling solutions for
Kubernetes.

H2. Towards the latter end of the experiments, where resource usage is high
both solutions will perform similarly. This is based on the fact that if all the
compute resources in the cluster are needed, there will not be any technique that
will consistently schedule pods differently. Simply the cluster would be filled up
with all CPU cores being pinned close to 100%.

H3 The default scheduler will outperform the custom scheduler in every sce-
nario in terms of throughput. This hypothesis is based on previous literature in
terms of energy and performance trade-offs, where in seldom cases you can have
both. The added overhead of custom scheduling decisions will likely impact the
scaling capabilities of the cluster.

4 Experiments and Results

4.1 Experimental Setup

As the path of experimentation in this paper is to evaluate a chain-function
setup, a CPU and Memory intensive workload was chosen, namely, image pro-
cessing. The pipeline consists of four serverless functions: 1) Director Function,
a design pattern in multi-function setups as it only requires the client to submit
a single HTTP request to fully process an image instead of individual requests
to each serverless function. Its purpose is to call all the other functions; 2) Image
Resize Function (Upscaling); 3) Image Transform Function (Rotation), and 4)
Image Recolour Function (RGB Manipulation).

The benchmarking client is a Standard 8s v5 Virtual Machine in Azure
configured with accelerated networking to allow for high request throughput.
This size was chosen to ensure the reliability of running hundreds of concurrent
clients that send web requests to the director functions deployed onto the Ku-
bernetes cluster. Apache JMeter [2] is chosen as the primary load testing tool
due to its high configurability of flows and easy extensibility when it comes to
benchmarking different function deployment scenarios with varying amounts of
initial replicas. The test plan employs a multi-threaded approach, simulating a
large number of virtual users to stress-test the system. To measure power, the
proposed power model in Fan et al. [7] is adopted as it is deemed more reli-
able than, e.g. a tool such as PowerTop [9], in a virtualised environment. This
model applies the Thermal Design Power (TDP) values of the processors running
within the cluster which are Intel Xeon Platinum 8730C, featuring 32 cores and
64 threads with a TDP of 270W. In our system, there are 40 vCores (Virtual
Cores) worth processing power which is equivalent to 40 threads.

Experiments are run over a varying amount of initial function deployments, in
order to observe the differences in resource usage metrics and power consumption
between them. Five runs of each scenario are run for consistency and validity of
results, each deployment is tested on the custom ML-agent based scheduler as
well as Kubernetes default scheduler. The runs are broken down as follows: 1)

Scheduling Energy-Aware Multi-Function Serverless Workloads in OpenFaaS 7

10 deployments per function (40 pods total with a theoretical maximum of 200
pods); 2) 20 deployments per function (80 pods total with a theoretical maximum
of 400 pods); 3) 30 deployments per function (120 pods total with a theoretical
maximum of 600 pods); 4) 40 deployments per function (160 pods total with
a theoretical maximum of 800 pods), and 5) 50 deployments per function (200
pods total with a theoretical maximum of 1000 pods).

4.2 ML Model Performance

The model was trained on a dataset comprised of features extracted every 2
minutes from the Kubernetes cluster while being under load for a total of 6
hours resulting in a total of approximately 3000 data points. The evaluation
metrics were computed using a test set, 20% of the entire dataset, that was not
part of the training data. The confusion matrix was constructed to capture the
true positives, true negatives, false positives, and false negatives for each class.
Table 1 illustrates the performance metrics achieved for the ML model, broken
down into accuracy, precision, recall and F1 Score.

Table 1. Performance Metrics of the Random Forest Classifier

Accuracy|Precision|Recall|F1 Score
94.59% 95.80% (94.59%| 94.79%

K8svm-worker0_pods

Ksvm-worker1_pods

True label

K8svm-worker2_pods

Ksvm-worker3_pods

Fig. 2. Confusion Matrix of Test Set Predictions of the Random Forest Classifier

8 R. Chiorescu et al.

Figure 2 presents the confusion matrix generated following training and vali-
dation. The matrix is comprised of two categories, predicted label and true label,
with the main diagonal representing true values and the corners signifying false

predictions.

Suerage PoerConsurmption by Number of Deployments: Custom Scheduler s Defauk Scheduler

Average Pod Count by Number of Deployments:Custom Scheduler v Defauk Scheduler

- cson 5.

-t

e

Aversas bower (w)

E)
inber Oepiayments

(a)

verage CPU usage by Number of eployments: Custor Scheduler s Defaut Shedler

- s
-t

s o Desoyrents

(®)

- cson 5551
-t

E)
nberfDepisyments

(c)

- asn
-t

s Desogrents

(d)

Fig. 3. Metrics by Number of Deployments. (a) Average Power Usage. (b) Average Pod
Count. (c) Average CPU Usage. (d) Average Memory Usage.

4.3 Custom Scheduler Evaluation

Figure 3(a) shows the breakdown of average power usage at varying levels of
deployments between the two scheduling solutions. At 10 deployments, the cus-
tom scheduler consumes approximately 15.7% more (Watt) power (117.07W)

Scheduling Energy-Aware Multi-Function Serverless Workloads in OpenFaaS 9

than the default scheduler (101.2W). However, as the number of deployments
increases, the custom scheduler tends to become more power-efficient. At 20 de-
ployments, the custom scheduler consumes about 9.6% less power (130.01W)
compared to the default (143.84W). At 30 deployments, the power saving in-
creases to 14.5% (137.41W for custom vs. 160.62W for default). The trend contin-
ues at 40 deployments with a 16.7% reduction (164.95W for custom vs. 198.08 W
for default). Finally, at 50 deployments, the custom scheduler consumes approx-
imately 2.8% less power (191.26W vs. 196.67W for default). At 50 deployments,
the CPU usage is pinned towards 100% signifying that the hardware limitations
of the cluster is reached. If further testing were to be conducted on a larger
cluster, we would most likely observe a similar pattern to the 20,30 and 40 de-
ployment’s power values.

The number of pods metric in Figure 3(b) provides insights into container
orchestration efficiency as well as how many pods per function are needed for
the functions to execute at an acceptable rate. At 10 deployments, the custom
scheduler uses about 31.8% fewer pods (97 vs. 66 for default). At 20 deployments,
the default scheduler uses a significant 31.4% more pods (138 vs. 105 for custom).
However, at 30 deployments, the custom scheduler uses about 10% more pods
(154 vs. 140 for default). At 40 and 50, the gap closes, with custom scheduler
uses about 2.5% more pods (165 vs. 161 for default) and respectively, 1.5 % more
(200 vs. 203 for default).

Figure 3(c) presents the average CPU usage, which is directly proportional
to 3(a) as power estimations are directly based on CPU. At 10 deployments, the
custom scheduler uses about 10.7% more CPU (62.68% vs. 56.56% for default).
However, at 20 deployments, the CPU usage is nearly identical, with the custom
scheduler using about 2.8% less CPU (69.06% vs. 71.72% for default). At 30
deployments, we see a marginal increase in CPU, although, the custom scheduler
uses 12.7% less CPU (69.82% vs. 79.73% for default). The gap widens at 40
deployments, where the custom scheduler uses 14.6% less CPU (82.5% vs. 96.51%
for default). Finally, at 50 deployments, the difference narrows to about 2.1%
less CPU usage for the custom scheduler (93.7% vs. 95.84% for default). As
mentioned in the presentation for power usage, the CPU tends to be pinned
close to maximum with 50 deployments, not allowing a varied placement of pods
on the nodes when essentially each node is maxed out in usage.

In Figure 3(d), memory consumption tends to be lower for the custom sched-
uler in small deployments with an outlier at the minimum number of 10. The
main consumer of memory is the resize serverless function, which upscales the
chosen image to a 1920x1080 resolution, and the values suggest that the perfor-
mance of the resize function, should in theory, be similar. At 10 deployments,
the custom scheduler uses about 15% less memory (11.16 GiB vs. 13.85 GiB for
default). At 20 deployments, the memory saving is significant at 38% (8.61 GiB
for custom vs. 12,91 GiB for default). However, at 30 deployments, the custom
scheduler uses about 29% less memory (12.61 GiB vs. 17.8 GiB for default). At
40 deployments, the memory usage is almost identical, with the custom sched-
uler using about 5% less memory (18.01 GiB vs. 19.26 GiB for default). Finally,

10 R. Chiorescu et al.

at 50 deployments, both schedulers use virtually the same amount of memory
(21.26 and 21.08 GiB).

Table 2. Request Execution Times (ms) - Custom Scheduler

No.|Avg.|Med.|90th|95th|99th | Err% | Thr/s
10 |1167| 445 |3056 (5548|9119 |41.18%| 36.2
20 4885|5079 {9103 (9575|9943 | 39.9% | 41.5
30 4785|4719 [8906|9474 | 9933 (44.14%| 50.4
40 (6834 | 7263 |9536 |9795| 9993 [62.74%| 33.8
50 | 7423|7716 | 9624 |9844|10015(72.25%| 29.3

Table 3. Request Execution Times (ms) - Default Scheduler

No.|Avg.|Med.|90th|95th|99th | Err% | Thr/s
10 |1450| 270 |6064|8176| 9672 |53.44%| 24.3
20 |3965| 3614 | 8066|8974 | 9820 [29.47%| 56.6
30 6299 6551 [9344|9693| 9972 (45.86%| 50.0
40 7193 7453 |9551 9802 |10004|58.11%| 45.5
50 [7089 7316 |9538|9798|10005(69.68%| 31.6

Tables 2 and 3 present the average, median, 90, 95 and 99th percentiles
response times of requests in all the deployments evaluated. With this knowledge,
a comparison of the custom and the default schedulers is performed with the aim
to conclude if an acceptable QoS has been achieved by custom scheduler through
observing the energy vs performance trade-off. Note that the metrics displayed
are only for successful (200 OK) requests and not errors (500 Internal Server
Error).

Throughput (Thr/s): the custom scheduler generally shows higher through-
put in lower numbers of deployments (36.2 vs. 24.3 at 10 deployments). How-
ever, as the number of deployments increases, the default scheduler starts to
outperform the custom one, which is expected, and especially noticeable at 20
deployments (41.5 vs. 56.6), considering the previous comparison in power con-
sumption.

Average Execution Latency (Avg.): the custom scheduler starts with a
lower average latency at 10 deployments (1167 vs. 1450 ms). Although, as the
number of deployments grows, the custom scheduler’s average latency becomes
competitive or even better than the default scheduler, particularly noticeable at
20 and 30 deployments.

Percentile Execution Latencies (90, 95, 99th): Both schedulers show
increasing latencies as we move from the median to the 99th percentile, which is
expected. The custom scheduler generally has higher 99th-percentile latencies,
indicating that it may be less reliable under heavier loads.

Scheduling Energy-Aware Multi-Function Serverless Workloads in OpenFaaS 11

The error rates are notably high for both schedulers but are generally higher
for the custom scheduler across all numbers of deployments. These values in
error rate can be attributed to the limitations of the OpenFaaS Gateway scaling
capabilities.

4.4 Research Hypotheses Evaluation

H1. The ML solution will be reliable in scheduling pods, with little added delay
between scheduling decisions. This has proven to be true, with the proposed
model achieving a 94.59% accuracy at predicting nodes on the test set. The
accuracy metric is given by how similar the output of the model is to that of
the default scheduler i.e. effectively the node label that a pod was scheduled on
by the default scheduler. In the real-world deployment, it has added negligible
overhead in terms of scheduling latency. If the logs of the scheduling extension
are inspected, decisions are made in less than a second, deeming the solution
reliable for real-time scheduling.

H2. Towards the latter end of the experiments, where resource usage is high
both solutions will perform similarly. This hypothesis has proven to be entirely
true as towards 50 deployments, the resources in the cluster were completely
saturated, and both scenarios performed similarly across the board with a dif-
ference 1-3%, in terms of all the metrics considered, including performance. The
results do truly show that scheduling decisions do not matter all that much when
there is a lack of resources present.

H3. The default scheduler will outperform the custom scheduler in every sce-
nario in terms of throughput. This hypothesis has proven to be partially true. We
were intrigued by the results in the case of the two outliers in this experiment at
10 and 30 deployments. At 10 deployments the increase in performance directly
correlates with the resources used in our custom scheduler scenario. However,
the most intriguing result was at 30 deployments. Despite the custom scheduler
consuming significantly less power, it managed to achieve a throughput of 50.4,
essentially on par with the default scheduler’s 50.0. The custom scheduler was
able to deliver nearly identical throughput while being more power-efficient by
14.5%. This performance was consistent across multiple runs of the experiment
though.

4.5 Summary

Apart from a couple outliers, the results do show a realistic trade-off between
performance and power consumption. If all the scenarios to calculate an average
in power reduction are considered, an 8% decrease in power consumption is
achieved. With the outliers at 10 deployments and 30 deployments removed,
the total average savings are 10.7%. In terms of performance loss the average,
median, 90, 95 and 99th percentile values tend to be rather close to each other
when comparing the two solutions. Finally, to answer the main research question,
the proposed custom scheduler can provide an acceptable QoS depicted by the
differences of error rate and throughput, while the implementation does pose

12 R. Chiorescu et al.

higher values for dropped requests and lower for throughput in most cases. The
reduction in power consumption can be considered worthwhile as the losses are
an expected outcome when trying to save power and they situate themselves in
the same realm to those of the default scheduler.

5 Conclusion

This paper has presented an energy-efficient pluggable solution to scheduling in
Kubernetes in a serverless computing environment through the integration of a
learning-based model into the scheduler. In terms of overall metrics this solution
achieved 8% reduction in energy consumption at the cost of a directly correlated
loss in performance, thus maintaining the application QoS. Future work will
include the generalisation of the proposed model to other workloads such as data
analytics and video processing, and scaling the experiments to encompass larger
clusters and diverse cloud environments, thereby validating the scalability and
robustness of the proposed solution. Moreover, it will consider experimentation
with other solutions for scheduling in Kubernetes, e.g. investigate the use of
Deep Learning-based schedulers, Mixed-Integer Linear Programming (MILP), or
other optimisation techniques for scheduling tasks in Kubernetes. Investigating
additional machine learning models could yield further insights and possibly
superior performance outcomes.

Acknowledgments. The authors would like to thank the European Next Generation
Internet Program for Open INTErnet Renovation (NGI-Pointer 2) for supporting this
work under contract 871528 (EDGENESS Project).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Alhindi, A., Djemame, K., Banaie, F.: On the power consumption of serverless
functions: an evaluation of openfaas. In: Proc. of the 15th IEEE/ACM Interna-
tional Conference on Utility and Cloud Computing (UCC). pp. 366-371. IEEE,
Vancouver, USA (Dec 2022)

2. Apache Software Foundation: Apache jmeter (2023), https://jmeter.apache.org/

3. Das, A., Leaf, A., Varela, C., Patterson, S.: Skedulix: Hybrid cloud scheduling for
cost-efficient execution of serverless applications. In: 2020 IEEE 13th International
Conference on Cloud Computing. pp. 609-618. IEEE, Beijing, China (2020)

4. Djemame, K.: Energy efficiency in edge environments: a serverless computing ap-
proach. In: Tserpes, K., Altmann, J., Bafiares, J., Agmon Ben-Yehuda, O., Dje-
mame, K., Stankovski, V., Tuffin, B. (eds.) Economics of Grids, Clouds, Systems,
and Services. pp. 181-184. Springer International Publishing, Cham (2021)

5. Djemame, K., Parker, M., Datsev, D.: Open-source Serverless Architectures: an
Evaluation of Apache OpenWhisk. In: Proc. IEEE/ACM 13th International Con-
ference on Utility and Cloud Computing (UCC). pp. 329-335. IEEE, Leicester, UK
(2020)

Scheduling Energy-Aware Multi-Function Serverless Workloads in OpenFaaS 13

11.
12.
13.

14.
15.

16.

Fan, D., He, D.: A scheduler for serverless framework base on kubernetes. In: Proc.
2020 4th High Performance Computing and Cluster Technologies Conference &
3rd International Conference on Big Data and Artificial Intelligence. p. 229-232.
HPCCT & BDAI ’20, ACM, NY, USA (2020)

Fan, X., Weber, W., Barroso, L.: Power provisioning for a warehouse-sized com-
puter. In: Proc. of the 34th Annual International Symposium on Computer Archi-
tecture. p. 13-23. ACM, NY, USA (2007)

Intel: Telemetry aware scheduling (Nov 2021),

https://www.intel.com/content /www/us/en/developer/articles/technical /telemetry-

aware-scheduling.html
Intel: Powertop (2023), https://wiki.archlinux.org/title /powertop

. Jia, X., Zhao, L.: Raef: Energy-efficient resource allocation through energy fungi-

bility in serverless. In: 2021 IEEE 27th International Conference on Parallel and
Distributed Systems. pp. 434—441. IEEE, Los Alamitos, CA, USA (Dec 2021)
Kramer, O.: Scikit-Learn. In: Machine Learning for Evolution Strategies, pp. 45—
53. Springer, Cham (2016)

Microsoft: Azure machine learning (2023), https://azure.microsoft.com/en-
gb/products/machine-learning

OpenFaaS: Serverless functions, made simple (2023), https://openfaas.com/
Prometheus: From metrics to insight (2023), https://prometheus.io/

Rocha, 1., Goéttel, C., Felber, P., Pasin, M., Rouvoy, R., Schiavoni, V.: Heats:
Heterogeneity-and energy-aware task-based scheduling. In: 27th Euromicro In-
ternational Conference on Parallel, Distributed and Network-Based Processing
(PDP). pp. 400-405. IEEE, Pavia, Italy (2019)

Toka, L., Dobreff, G., Fodor, B., Sonkoly, B.: Machine learning-based scaling man-
agement for kubernetes edge clusters. IEEE Transactions on Network and Service
Management 18(1), 958-972 (2021)

